- Oct 13, 2020
-
-
Simon Marchi authored
Debugging with "maintenance set target-async off" on Linux has been broken since 5b6d1e4f ("Multi-target support"). The issue is easy to reproduce: $ ./gdb -q --data-directory=data-directory -nx ./test Reading symbols from ./test... (gdb) maintenance set target-async off (gdb) start Temporary breakpoint 1 at 0x1151: file test.c, line 5. Starting program: /home/simark/build/binutils-gdb/gdb/test ... and it hangs there. The difference between pre-5b6d1e4f and 5b6d1e4f is that fetch_inferior_event now calls target_wait with TARGET_WNOHANG for non-async-capable targets, whereas it didn't before. For non-async-capable targets, this is how it's expected to work when resuming execution: 1. we call resume 2. the infrun async handler is marked in prepare_to_wait, to immediately wake up the event loop when we get back to it 3. fetch_inferior_event calls the target's wait method without TARGET_WNOHANG, effectively blocking until the target has something to report However, since we call the target's wait method with TARGET_WNOHANG, this happens: 1. we call resume 2. the infrun async handler is marked in prepare_to_wait, to immediately wake up the event loop when we get back to it 3. fetch_inferior_event calls the target's wait method with TARGET_WNOHANG, the target has nothing to report yet 4. we go back to blocking on the event loop 5. SIGCHLD finally arrives, but the event loop is not woken up, because we are not in async mode. Normally, we should have been stuck in waitpid the SIGCHLD would have unblocked us. We end up in this situation because these two necessary conditions are met: 1. GDB uses the TARGET_WNOHANG option with a target that can't do async. I don't think this makes sense. I mean, it's technically possible, the doc for TARGET_WNOHANG is: /* Return immediately if there's no event already queued. If this options is not requested, target_wait blocks waiting for an event. */ TARGET_WNOHANG = 1, ... which isn't in itself necessarily incompatible with synchronous targets. It could be possible for a target to support non-blocking polls, while not having a way to asynchronously wake up the event loop, which is also necessary to support async. But as of today, we don't expect GDB and sync targets to work this way. 2. The linux-nat target, even in the mode where it emulates a synchronous target (with "maintenance set target-async off") respects TARGET_WNOHANG. Other non-async targets, such as windows_nat_target, simply don't check / support TARGET_WNOHANG, so their wait method is always blocking. Fix the first issue by avoiding using TARGET_WNOHANG on non-async targets, in do_target_wait_1. Add an assert in target_wait to verify it doesn't happen. The new test gdb.base/maint-target-async-off.exp is a simple test that just tries running to main and then to the end of the program, with "maintenance set target-async off". gdb/ChangeLog: PR gdb/26642 * infrun.c (do_target_wait_1): Clear TARGET_WNOHANG if the target can't do async. * target.c (target_wait): Assert that we don't pass TARGET_WNOHANG to a target that can't async. gdb/testsuite/ChangeLog: PR gdb/26642 * gdb.base/maint-target-async-off.c: New test. * gdb.base/maint-target-async-off.exp: New test. Change-Id: I69ad3a14598863d21338a8c4e78700a58ce7ad86
-
Kamil Rytarowski authored
Currently it does not add any value. The netbsd_tdesc local variable is no longer needed. Remove it. The tdesc value is set by the low target now. gdbserver/ChangeLog: * netbsd-low.cc (netbsd_tdesc): Remove. (netbsd_add_process): Likewise. (netbsd_process_target::create_inferior): Update.
-
H.J. Lu authored
Skip incremental_test_2, incremental_test_3, incremental_test_4, incremental_test_5, incremental_copy_test, incremental_common_test_1 and incremental_comdat_test_1 when -fcf-protection is used to compile gold since gold doesn't properly support -fcf-protection on Intel CET enabled OS. Also skip incremental_copy_test and incremental_comdat_test_1 for GCC 9 or later since they failed with GCC 9 or later. PR gold/23539 * configure.ac: Check for GCC 9 or later and for -fcf-protection. * configure: Regenerated. * testsuite/Makefile.am (check_PROGRAMS): Skip incremental_test_2, incremental_test_3, incremental_test_4, incremental_test_5, incremental_copy_test, incremental_common_test_1 and incremental_comdat_test_1 for -fcf-protection. Also Skip incremental_copy_test and incremental_comdat_test_1 for GCC 9 or later. * testsuite/Makefile.in: Regenerated.
-
H.J. Lu authored
Discard .note.gnu.property section since it changes the expected section order. PR gold/23503 * testsuite/Makefile.am (justsyms_lib): Pass -T $(srcdir)/justsyms_lib.t to gold. * testsuite/Makefile.in: Regenerated. * testsuite/justsyms_lib.t: New file. * testsuite/script_test_10.t: Discard .note.gnu.property section.
-
H.J. Lu authored
This patch updates GNU_PROPERTY_X86_XXX macros for gold: 1. GNU_PROPERTY_X86_UINT32_AND_XXX: A 4-byte unsigned integer property. A bit is set if it is set in all relocatable inputs: #define GNU_PROPERTY_X86_UINT32_AND_LO 0xc0000002 #define GNU_PROPERTY_X86_UINT32_AND_HI 0xc0007fff 2. GNU_PROPERTY_X86_UINT32_OR_XXX: A 4-byte unsigned integer property. A bit is set if it is set in any relocatable inputs: #define GNU_PROPERTY_X86_UINT32_OR_LO 0xc0008000 #define GNU_PROPERTY_X86_UINT32_OR_HI 0xc000ffff 3. GNU_PROPERTY_X86_UINT32_OR_AND_XXX: A 4-byte unsigned integer property. A bit is set if it is set in any relocatable inputs and the property is present in all relocatable inputs: #define GNU_PROPERTY_X86_UINT32_OR_AND_LO 0xc0010000 #define GNU_PROPERTY_X86_UINT32_OR_AND_HI 0xc0017fff 4. GNU_PROPERTY_X86_FEATURE_2_NEEDED, GNU_PROPERTY_X86_FEATURE_2_USED and GNU_PROPERTY_X86_FEATURE_2_XXX bits. GNU_PROPERTY_X86_FEATURE_1_AND is unchanged. GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_ISA_1_NEEDED are updated to better support targeted processors since GNU_PROPERTY_X86_ISA_1_?86 aren't isn't very useful. A new set of GNU_PROPERTY_X86_ISA_1_XXX bits are defined. The previous GNU_PROPERTY_X86_ISA_1_XXX macros are deprecated and renamed to GNU_PROPERTY_X86_COMPAT_ISA_1_XXX and GNU_PROPERTY_X86_COMPAT_2_ISA_1_XXX. elfcpp/ * elfcpp.h (GNU_PROPERTY_X86_ISA_1_USED): Renamed to ... (GNU_PROPERTY_X86_COMPAT_ISA_1_USED): This. (GNU_PROPERTY_X86_ISA_1_NEEDED): Renamed to ... (GNU_PROPERTY_X86_COMPAT_ISA_1_NEEDED): This. (GNU_PROPERTY_X86_UINT32_AND_LO): New. (GNU_PROPERTY_X86_UINT32_AND_HI): Likewise. (GNU_PROPERTY_X86_UINT32_OR_LO): Likewise. (GNU_PROPERTY_X86_UINT32_OR_HI): Likewise. (GNU_PROPERTY_X86_UINT32_OR_AND_LO): Likewise. (GNU_PROPERTY_X86_UINT32_OR_AND_HI): Likewise. (GNU_PROPERTY_X86_COMPAT_2_ISA_1_NEEDED): New. (GNU_PROPERTY_X86_COMPAT_2_ISA_1_NEEDED): Likewise. (GNU_PROPERTY_X86_FEATURE_1_AND): Updated to (GNU_PROPERTY_X86_UINT32_AND_LO + 0). (GNU_PROPERTY_X86_ISA_1_NEEDED): New. Defined to GNU_PROPERTY_X86_UINT32_OR_LO + 2. (GNU_PROPERTY_X86_FEATURE_2_NEEDED): New. Defined to (GNU_PROPERTY_X86_UINT32_OR_LO + 1). (GNU_PROPERTY_X86_ISA_1_USED): New. Defined to GNU_PROPERTY_X86_UINT32_OR_AND_LO + 2. (GNU_PROPERTY_X86_FEATURE_2_USED): New. Defined to (GNU_PROPERTY_X86_UINT32_OR_AND_LO + 1). gold/ * x86_64.cc (Target_x86_64::Target_x86_64): Initialize feature_2_used_, feature_2_needed_ and object_feature_2_used_. (Target_x86_64::feature_2_used_): New data member. (Target_x86_64::feature_2_needed_): Likewise. (Target_x86_64::object_isa_1_used_): Likewise. (Target_x86_64::record_gnu_property): Support GNU_PROPERTY_X86_COMPAT_ISA_1_USED, GNU_PROPERTY_X86_COMPAT_ISA_1_NEEDED, GNU_PROPERTY_X86_COMPAT_2_ISA_1_USED, GNU_PROPERTY_X86_COMPAT_2_ISA_1_NEEDED, GNU_PROPERTY_X86_FEATURE_2_USED and GNU_PROPERTY_X86_FEATURE_2_NEEDED. (Target_x86_64::merge_gnu_properties): Merge FEATURE_2_USED bits. Initialize object_feature_2_used_. (Target_x86_64::do_finalize_gnu_properties): Support GNU_PROPERTY_X86_FEATURE_2_USED and GNU_PROPERTY_X86_FEATURE_2_NEEDED. * testsuite/gnu_property_a.S (GNU_PROPERTY_X86_ISA_1_USED): Set to 0xc0010002. (GNU_PROPERTY_X86_ISA_1_NEEDED): Set to 0xc0008002. * testsuite/gnu_property_b.S (GNU_PROPERTY_X86_ISA_1_USED): Set to 0xc0010002. (GNU_PROPERTY_X86_ISA_1_NEEDED): Set to 0xc0008002. * testsuite/gnu_property_c.S (GNU_PROPERTY_X86_ISA_1_USED): Set to 0xc0010002. (GNU_PROPERTY_X86_ISA_1_NEEDED): Set to 0xc0008002. * testsuite/gnu_property_test.sh: Updated.
-
H.J. Lu authored
The NT_GNU_PROPERTY_TYPE_0 note should be aligned to 8 bytes for 64-bit ELF as specified by gABI. A note section can be only placed in a PT_NOTE segment with the same alignment. PR gold/22914 PR gold/23535 * layout.cc (Layout::attach_allocated_section_to_segment): Place a note section in a PT_NOTE segment with the same alignment. Set the alignment of the PT_NOTE segment from the alignment of the note section. (Layout::create_note): Align the NT_GNU_PROPERTY_TYPE_0 note to 8 bytes for 64-bit ELF. (Layout::segment_precedes): Place segments with larger alignments first. * output.cc (Output_segment::Output_segment): Initialize align_. * output.h (Output_segment): Add align, set_align and align_. * testsuite/Makefile.am (gnu_property_test.stdout): Pass -lhSWn to $(TEST_READELF). (gnu_property_test): Pass --build-id to ld. * testsuite/Makefile.in: Regenerated. * testsuite/gnu_property_test.sh (check_alignment): New. Use check_alignment to check the NT_GNU_PROPERTY_TYPE_0 note alignment. Verify that there are 2 PT_NOTE segments.
-
H.J. Lu authored
With commit 4aebb631 Author: Rahul Chaudhry <rahulchaudhry@google.com> Date: Wed Feb 15 00:37:10 2017 -0800 Improved support for --icf=safe when used with -pie. we now check opcode with R_X86_64_PC32 relocation, which tell branches from other instructions. We can enable safe ICF for shared object on x86-64. Also, global symbols with non-default visibility should be folded like local symbols. PR gold/21452 * x86_64.cc (Scan::local_reloc_may_be_function_pointer): Remove check for shared library. (Scan::global_reloc_may_be_function_pointer): Remove check for shared library and symbol visibility. * testsuite/icf_safe_so_test.cc (bar_static): New function. (main): Take function address of bar_static and use it. * testsuite/icf_safe_so_test.sh (arch_specific_safe_fold): Also check fold on x86-64. Check bar_static isn't folded.
-
H.J. Lu authored
Skip zero-sized sections since there is no need to do ICF on them. * icf.cc (Icf::find_identical_sections): Skip zero-sized sections.
-
Kamil Rytarowski authored
The files used to be named 'nbsd', which incorrectly reflects the name of the OS and confuses it with other BSD derived OSes. gdb/ChangeLog: * Makefile.in (ALL_64_TARGET_OBS, ALL_TARGET_OBS) HFILES_NO_SRCDIR, ALLDEPFILES): Rename files. * alpha-bsd-nat.c: Adjust include. * alpha-bsd-tdep.h: Adjust comment. * alpha-nbsd-tdep.c: Rename to ... * alpha-netbsd-tdep.c: ... this, adjust include. * amd64-nbsd-nat.c: Rename to ... * amd64-netbsd-nat.c: ... this, adjust include. * amd64-nbsd-tdep.c: Rename to ... * amd64-netbsd-tdep.c: ... this, adjust include. * amd64-tdep.h: Adjust include. * arm-nbsd-nat.c: Rename to ... * arm-netbsd-nat.c: ... this, adjust include. * arm-nbsd-tdep.c: Rename to ... * arm-netbsd-tdep.c: ... this, adjust include. * arm-nbsd-tdep.h: Rename to ... * arm-netbsd-tdep.h: ... this, adjust include. * configure.nat: Adjust file lists. * configure.tgt: Likewise. * hppa-nbsd-nat.c: Rename to ... * hppa-netbsd-nat.c: ... this, adjust include. * hppa-nbsd-tdep.c: Rename to ... * hppa-netbsd-tdep.c: ... this, adjust include. * i386-nbsd-nat.c: Rename to ... * i386-netbsd-nat.c: ... this, adjust include. * i386-nbsd-tdep.c: Rename to ... * i386-netbsd-tdep.c: ... this, adjust include. * m68k-bsd-nat.c: Adjust include. * mips-nbsd-nat.c: Rename to ... * mips-netbsd-nat.c: ... this, adjust include. * mips-nbsd-tdep.c: Rename to ... * mips-netbsd-tdep.c: ... this, adjust include. * mips-nbsd-tdep.h: Rename to ... * mips-netbsd-tdep.h: ... this. * nbsd-nat.c: Rename to ... * netbsd-nat.c: ... this, adjust include. * nbsd-nat.h: Rename to ... * netbsd-nat.h: ... this, adjust include. * nbsd-tdep.c: Rename to ... * netbsd-tdep.c: ... this, adjust include. * nbsd-tdep.h: Rename to ... * netbsd-tdep.h: ... this. * ppc-nbsd-nat.c: Rename to ... * ppc-netbsd-nat.c: ... this, adjust include. * ppc-nbsd-tdep.c: Rename to ... * ppc-netbsd-tdep.c: ... this, adjust include and comment. * ppc-nbsd-tdep.h: Rename to ... * ppc-netbsd-tdep.h: ... this. * sh-nbsd-nat.c: Rename to ... * sh-netbsd-nat.c: ... this, adjust include. * sh-nbsd-tdep.c: Rename to ... * sh-netbsd-tdep.c: ... this, adjust include. * sparc-nbsd-nat.c: Rename to ... * sparc-netbsd-nat.c: ... this. * sparc-nbsd-tdep.c: Rename to ... * sparc-netbsd-tdep.c: ... this, adjust include. * sparc64-nbsd-nat.c: Rename to ... * sparc64-netbsd-nat.c: ... this. * sparc64-nbsd-tdep.c: Rename to ... * sparc64-netbsd-tdep.c: ... this, adjust include. * sparc64-tdep.h: Adjust comment. * vax-bsd-nat.c: Adjust include. * vax-nbsd-tdep.c: Rename to ... * vax-netbsd-tdep.c: ... this, adjust include.
-
Tom Tromey authored
Because target_section_table only holds a vector, and because it is used in an "open" way, this patch makes it just be an alias for the std::vector specialization. This makes the code less wordy. If we do ever want to add more specialized behavior to this type, it's simple enough to convert it back to a struct with the few needed methods implied by this change. gdb/ChangeLog 2020-10-12 Tom Tromey <tom@tromey.com> * target.h (struct target_ops) <get_section_table>: Update. (target_get_section_table): Update. * target.c (target_get_section_table, target_section_by_addr) (memory_xfer_partial_1): Update. * target-section.h (target_section_table): Now an alias. * target-delegates.c: Rebuild. * target-debug.h (target_debug_print_target_section_table_p): Rename from target_debug_print_struct_target_section_table_p. * symfile.c (build_section_addr_info_from_section_table): Update. * solib.c (solib_map_sections, solib_contains_address_p): Update. * solib-svr4.c (scan_dyntag): Update. * solib-dsbt.c (scan_dyntag): Update. * remote.c (remote_target::remote_xfer_live_readonly_partial): Update. * record-full.c (record_full_core_target::xfer_partial): Update. * progspace.h (struct program_space) <target_sections>: Update. * exec.h (print_section_info): Update. * exec.c (exec_target::close, build_section_table) (add_target_sections, add_target_sections_of_objfile) (remove_target_sections, exec_on_vfork) (section_table_available_memory) (section_table_xfer_memory_partial) (exec_target::get_section_table, exec_target::xfer_partial) (print_section_info, set_section_command) (exec_set_section_address, exec_target::has_memory): Update. * corelow.c (core_target::build_file_mappings) (core_target::xfer_partial, core_target::info_proc_mappings) (core_target::info_proc_mappings): Update. * bfd-target.c (class target_bfd): Update
-
Tom Tromey authored
The call to clear_section_table in ~program_space is now clearly not needed -- the section table will clear itself. This patch removes this call and then inlines the one remaining call to clear_section_table. gdb/ChangeLog 2020-10-12 Tom Tromey <tom@tromey.com> * progspace.c (program_space::~program_space): Don't call clear_section_table. * exec.h (clear_section_table): Don't declare. * exec.c (exec_target::close): Update. (clear_section_table): Remove.
-
Tom Tromey authored
Now that target_section_table uses std::vector, add_target_sections_of_objfile does not need to loop twice. This patch simplifies this code to have just a single loop. Also, the passed-in objfile can never be NULL, so this changes this function to assert that. gdb/ChangeLog 2020-10-12 Tom Tromey <tom@tromey.com> * exec.c (add_target_sections_of_objfile): Simplify.
-
Tom Tromey authored
I noticed that build_section_table cannot fail. This patch changes it to return a target_section_table and then removes the dead code. gdb/ChangeLog 2020-10-12 Tom Tromey <tom@tromey.com> * solib.c (solib_map_sections): Update. * record-full.c (record_full_core_open_1): Update. * exec.h (build_section_table): Return a target_section_table. * exec.c (exec_file_attach): Update. (build_section_table): Return a target_section_table. * corelow.c (core_target::core_target): Update. * bfd-target.c (target_bfd::target_bfd): Update.
-
Tom Tromey authored
This changes target_section_table to wrap a std::vector. This simplifies some code, and also enables the simplifications coming in the subsequent patches. Note that for solib, I chose to have it use a pointer to a target_section_table. This is more convoluted than would be ideal, but I didn't want to convert solib to new/delete as a prerequisite for this series. gdb/ChangeLog 2020-10-12 Tom Tromey <tom@tromey.com> * target.c (target_section_by_addr, memory_xfer_partial_1): Update. * target-section.h (struct target_section_table): Use std::vector. * symfile.h (build_section_addr_info_from_section_table): Take a target_section_table. * symfile.c (build_section_addr_info_from_section_table): Take a target_section_table. * solist.h (struct so_list) <sections>: Change type. <sections_end>: Remove. * solib.c (solib_map_sections, clear_so, solib_read_symbols) (solib_contains_address_p): Update. * solib-svr4.c (scan_dyntag): Update. * solib-dsbt.c (scan_dyntag): Update. * remote.c (remote_target::remote_xfer_live_readonly_partial): Update. * record-full.c (record_full_core_start, record_full_core_end): Remove. (record_full_core_sections): New global. (record_full_core_open_1, record_full_core_target::xfer_partial): Update. * exec.h (build_section_table, section_table_xfer_memory_partial) (add_target_sections): Take a target_section_table. * exec.c (exec_file_attach, clear_section_table): Update. (resize_section_table): Remove. (build_section_table, add_target_sections): Take a target_section_table. (add_target_sections_of_objfile, remove_target_sections) (exec_on_vfork): Update. (section_table_available_memory): Take a target_section_table. (section_table_read_available_memory): Update. (section_table_xfer_memory_partial): Take a target_section_table. (print_section_info, set_section_command) (exec_set_section_address, exec_target::has_memory): Update. * corelow.c (class core_target) <m_core_section_table, m_core_file_mappings>: Remove braces. <~core_target>: Remove. (core_target::core_target): Update. (core_target::~core_target): Remove. (core_target::build_file_mappings) (core_target::xfer_memory_via_mappings) (core_target::xfer_partial, core_target::info_proc_mappings): Update. * bfd-target.c (target_bfd::xfer_partial): Update. (target_bfd::target_bfd): Update. (target_bfd::~target_bfd): Remove.
-
Tom Tromey authored
This introduces a new target-section.h file. This makes some of the later patches in this series a bit cleaner, because new includes of target.h won't be required. Also I think it's better to have small header files for each separate data structure. gdb/ChangeLog 2020-10-12 Tom Tromey <tom@tromey.com> * target.h (struct target_section, struct target_section_table): Move to target-section.h. * target-section.h: New file.
-
GDB Administrator authored
-
Alan Modra authored
binutils commit 5fbec329 changed disassembly of mfvsrd and mtvsrd to be consistent with the mfvsrwz and mtvsrw/mtvsrwz, which favour output of the fp/vr extended mnemonic and regs over the vsx form. This patch fixes the following, and removes some duplicates. FAIL: gdb.arch/powerpc-power8.exp: found: mfvsrd r12,vs62 FAIL: gdb.arch/powerpc-power8.exp: found: mtvsrd vs48,r11 FAIL: gdb.arch/powerpc-vsx2.exp: found: mfvsrd r12,vs30 FAIL: gdb.arch/powerpc-vsx2.exp: found: mfvsrd r12,vs30 FAIL: gdb.arch/powerpc-vsx2.exp: found: mfvsrd r12,vs62 FAIL: gdb.arch/powerpc-vsx2.exp: found: mfvsrd r12,vs62 FAIL: gdb.arch/powerpc-vsx2.exp: found: mtvsrd vs11,r28 FAIL: gdb.arch/powerpc-vsx2.exp: found: mtvsrd vs11,r28 FAIL: gdb.arch/powerpc-vsx2.exp: found: mtvsrd vs43,r29 FAIL: gdb.arch/powerpc-vsx2.exp: found: mtvsrd vs43,r29 * gdb.arch/powerpc-altivec.s, * gdb.arch/powerpc-power7.s, * gdb.arch/powerpc-power8.s, * gdb.arch/powerpc-power9.s, * gdb.arch/powerpc-vsx.s, * gdb.arch/powerpc-vsx2.s: Remove duplicate instructions. * gdb.arch/powerpc-altivec.exp, * gdb.arch/powerpc-power7.exp, * gdb.arch/powerpc-power8.exp, * gdb.arch/powerpc-power9.exp, * gdb.arch/powerpc-vsx.exp, * gdb.arch/powerpc-vsx2.exp: Likewise, and update expected disassembly of mfvsrd/mtvsrd.
-
Alan Modra authored
Commit ccb9eba6 updated the testsuite for some targets without running the testsuite on those targets. This patch corrects the update, in most cases just adding the expected full-stop. On powerpc64le-linux, fixes these: FAIL: gdb.arch/powerpc-d128-regs.exp: checking for PPC arch FAIL: gdb.arch/powerpc-disassembler-options.exp: set architecture powerpc:common64 FAIL: gdb.arch/powerpc-disassembler-options.exp: set architecture rs6000:6000 FAIL: gdb.arch/ppc64-symtab-cordic.exp: show architecture I also verified that arm-linuxeabi and s390x-linux cross-builds now pass their disassembler-options.exp tests. * gdb.arch/arm-disassembler-options.exp: Adjust expected "target architecture" output. * gdb.arch/powerpc-d128-regs.exp: Likewise. * gdb.arch/powerpc-disassembler-options.exp: Likewise. * gdb.arch/ppc64-symtab-cordic.exp: Likewise. * gdb.arch/s390-disassembler-options.exp: Likewise.
-
- Oct 12, 2020
-
-
Pedro Alves authored
The gdb.cp/ambiguous.exp testcase had been disabled for many years, but recently it was re-enabled. However, it is failing everywhere. That is because it is testing an old feature that is gone from GDB. The testcase is expecting to see an ambiguous field warning, like: # X is derived from A1 and A2; both A1 and A2 have a member 'x' send_gdb "print x.x\n" gdb_expect { -re "warning: x ambiguous; using X::A2::x. Use a cast to disambiguate.\r\n\\$\[0-9\]* = \[-\]*\[0-9\]*\r\n$gdb_prompt $" { pass "print x.x" } -re "warning: x ambiguous; using X::A1::x. Use a cast to disambiguate.\r\n\\$\[0-9\]* = \[-\]*\[0-9\]*\r\n$gdb_prompt $" { pass "print x.x" } -re ".*$gdb_prompt $" { fail "print x.x" } timeout { fail "(timeout) print x.x" } } However, GDB just accesses one of the candidates without warning or error: print x.x $1 = 1431655296 (gdb) FAIL: gdb.cp/ambiguous.exp: print x.x (The weird number is because the testcase does not initialize the variables.) The testcase come in originally with the big HP merge: +Sun Jan 10 23:44:11 1999 David Taylor <taylor@texas.cygnus.com> + + + The following files are part of the HP merge; some had longer + names at HP, but have been renamed to be no more than 14 + characters in length. Looking at the tree back then, we find that warning: /* Helper function used by value_struct_elt to recurse through baseclasses. Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes, and search in it assuming it has (class) type TYPE. If found, return value, else return NULL. If LOOKING_FOR_BASECLASS, then instead of looking for struct fields, look for a baseclass named NAME. */ static value_ptr search_struct_field (name, arg1, offset, type, looking_for_baseclass) char *name; register value_ptr arg1; int offset; register struct type *type; int looking_for_baseclass; { int found = 0; char found_class[1024]; value_ptr v; struct type *vbase = NULL; found_class[0] = '\000'; v = search_struct_field_aux (name, arg1, offset, type, looking_for_baseclass, &found, found_class, &vbase); if (found > 1) warning ("%s ambiguous; using %s::%s. Use a cast to disambiguate.", name, found_class, name); return v; } However, in current GDB, search_struct_field does not handle the ambiguous field case, nor is that warning found anywhere. Somehow it got lost over the years. That seems like a regression, because the compiler (as per language rules) rejects the ambiguous accesses as well. E.g.: gdb.cp/ambiguous.cc:98:5: error: request for member 'x' is ambiguous 98 | x.x = 1; | ^ gdb.cp/ambiguous.cc:10:7: note: candidates are: 'int A2::x' 10 | int x; | ^ gdb.cp/ambiguous.cc:4:7: note: 'int A1::x' 4 | int x; | ^ This patch restores the feature, though implemented differently and with better user experience, IMHO. An ambiguous access is now an error instead of a warning, and also GDB shows you all the candidates, like: (gdb) print x.x Request for member 'x' is ambiguous in type 'X'. Candidates are: 'int A1::x' (X -> A1) 'int A2::x' (X -> A2) (gdb) print j.x Request for member 'x' is ambiguous in type 'J'. Candidates are: 'int A1::x' (J -> K -> A1) 'int A1::x' (J -> L -> A1) Users can then fix their commands by casting or by specifying the baseclass explicitly, like: (gdb) p x.A1::x $1 = 1 (gdb) p x.A2::x $2 = 2 (gdb) p ((A1) x).x $3 = 1 (gdb) p ((A2) x).x $4 = 2 (gdb) p j.K::x $12 = 1 (gdb) p j.L::x $13 = 2 (gdb) p j.A1::x base class 'A1' is ambiguous in type 'J' The last error I've not touched; could be improved to also list the baseclass candidates. The showing the class "path" for each candidate was inspired by GCC's output when you try an ambiguous cast: gdb.cp/ambiguous.cc:161:8: error: ambiguous conversion from derived class 'const JVA1' to base class 'const A1': class JVA1 -> class KV -> class A1 class JVA1 -> class A1 (A1) jva1; ^~~~ I did not include the "class" word as it seemed unnecessarily repetitive, but I can include it if people prefer it: (gdb) print j.x Request for member 'x' is ambiguous in type 'J'. Candidates are: 'int A1::x' (class J -> class K -> class A1) 'int A1::x' (class J -> class L -> class A1) The testcase is adjusted accordingly. I also took the chance to modernize it at the same time. Also, as mentioned above, the testcase doesn't currently initialize the tested variables. This patch inializes them all, giving each field a distinct value, so that we can be sure that GDB is accessing the right fields / offsets. The testcase is extended accordingly. Unfortunately, this exposes a bug, not addressed in this patch. The bug is around a class that inherits from A1 directly and also inherits from two other distinct base classes that inherit virtually from A1 in turn: print jva1.KV::x $51 = 1431665544 (gdb) FAIL: gdb.cp/ambiguous.exp: all fields: print jva1.KV::x print jva1.KV::y $52 = 21845 (gdb) FAIL: gdb.cp/ambiguous.exp: all fields: print jva1.KV::y (gdb) print /x (KV)jva1 $4 = {<A1> = <invalid address>, _vptr.KV = 0x555555557b88 <vtable for JVA1+24>, i = 0x457} (gdb) print /x (A1)(KV)jva1 Cannot access memory at address 0x0 Since that's an orthogonal issue, I filed PR c++/26550 and kfailed the tests that fail because of it. gdb/ChangeLog: PR exp/26602 * valops.c (struct struct_field_searcher): New. (update_search_result): Rename to ... (struct_field_searcher::update_result): ... this. Simplify prototype. Record all found fields. (do_search_struct_field): Rename to ... (struct_field_searcher::search): ... this. Simplify prototype. Maintain stack of visited baseclass path. Call update_result for fields too. Keep searching fields in baseclasses instead of stopping at the first found field. (search_struct_field): Use struct_field_searcher. When looking for fields, report ambiguous access attempts. gdb/testsuite/ChangeLog: PR exp/26602 PR c++/26550 * gdb.cp/ambiguous.cc (marker1): Delete. (main): Initialize all the fields of the locals. Replace marker1 call with a "set breakpoint here" marker. * gdb.cp/ambiguous.exp: Modernize. Use gdb_continue_to_breakpoint instead of running to marker1. Add tests printing all the variables and all the fields of the variables. (test_ambiguous): New proc, expecting the new GDB output when a field access is ambiguous. Change all "warning: X ambiguous" tests to use it.
-
Gary Benson authored
A number of testcases define variables and/or functions which are referenced by GDB during the test, but which are not referenced from within the test executable. Clang correctly recognizes that these variables and functions are unused, and optimizes them out, causing the testcases in question to fail. This commit adds __attribute__ ((used)) in various places to prevent this. gdb/testsuite/ChangeLog: * gdb.base/msym-bp.c (foo): Add __attribute__ ((used)). * gdb.base/msym-bp-2.c (foo): Likewise. * gdb.base/msym-lang.c (foo): Likewise. * gdb.base/msym-lang-main.c (foo): Likewise. * gdb.base/symtab-search-order-1.c (static_global): Likewise. * gdb.guile/scm-pretty-print.c (eval_func): Likewise. * gdb.mi/mi-sym-info-1.c (global_f1): Likewise. * gdb.mi/mi-sym-info-2.c (global_f1, var1, var2): Likewise. * gdb.multi/watchpoint-multi-exit.c (globalvar): Likewise. * gdb.python/py-as-string.c (enum_valid, enum_invalid): Likewise. * gdb.python/py-objfile.c (static_var): Likewise. * gdb.python/py-symbol.c (rr): Likewise. * gdb.python/py-symbol-2.c (anon, rr): Likewise. * gdb.mi/mi-sym-info.exp (lineno1, lineno2): Updated.
-
GDB Administrator authored
-
- Oct 11, 2020
-
-
Andrew Burgess authored
Currently, GDB will only stop the backtrace at the main function if there is a minimal symbol with the matching name. In Fortran programs compiled with gfortran this is not the case. The main function is present in the DWARF, and as marked as DW_AT_main_subprogram, but there's no minimal symbol. This commit extends `inside_main_func` to check the full symbols if no matching minimal symbol is found. There's an updated test case that covers this change. gdb/ChangeLog: * frame.c (inside_main_func): Check full symbols as well as minimal symbols. gdb/testsuite/ChangeLog: * gdb.fortran/mixed-lang-stack.exp (run_tests): Update expected output of backtrace.
-
GDB Administrator authored
-
- Oct 10, 2020
-
-
GDB Administrator authored
-
- Oct 09, 2020
-
-
Joel Brobecker authored
This commit fixes the type of one of the parameters as well as a couple of temporaries. While at it, the function's description is slightly rewritten to make it a little clearer what the function does. gdb/ChangeLog: * ada-lang.c (advance_wild_match): Rewrite the function's description. Change the type of target0, t0 and t1 to char.
-
Tom Tromey authored
The type-safe attribute patch introduced a regression that can occur when the DW_AT_bit_offset value is negative. This can happen with some Ada programs. This patch fixes the problem. It also fixes a minor oddity in the existing scalar storage test -- this test was intended to assign a smaller number of bits to the field. 2020-10-09 Tom Tromey <tromey@adacore.com> * dwarf2/read.c (dwarf2_add_field): Handle signed offsets. gdb/testsuite/ChangeLog 2020-10-09 Tom Tromey <tromey@adacore.com> * gdb.ada/scalar_storage/storage.adb (Another_Range): New type. (Rec): Add field. Fix range. * gdb.ada/scalar_storage.exp: Update.
-
Tom Tromey authored
This changes ada_encode to return a std::string. This simplifies it somewhat, removes a use of GROW_VECT, and is also simpler for callers to use. gdb/ChangeLog 2020-10-09 Tom Tromey <tromey@adacore.com> * ada-lang.h (ada_encode): Return std::string. * ada-lang.c (ada_encode_1): Return std::string. (ada_encode): Likewise. (type_from_tag, ada_lookup_name_info::ada_lookup_name_info): Update. * ada-exp.y (block_lookup, write_var_or_type): Update.
-
Alan Modra authored
Calling non-pcrel functions from pcrel code requires a stub to set up r2. Gold created the stub, but an "optimisation" made the stub jump to the function local entry, ie. r2 was not initialised. This patch fixes that long branch stub problem, and another that might occur for plt call stubs to local functions. bfd/ * elf64-ppc.c (write_plt_relocs_for_local_syms): Don't do local entry offset optimisation. gold/ * powerpc.cc (Powerpc_relobj::do_relocate_sections): Don't do local entry offset optimisation for lplt_section. (Target_powerpc::Branch_info::make_stub): Don't add local entry offset to long branch dest passed to add_long_branch_entry. Do pass st_other bits. (Stub_table::Branch_stub_ent): Add "other_" field. (Stub_table::add_long_branch_entry): Add "other" param, and save. (Stub_table::branch_stub_size): Adjust long branch offset. (Stub_table::do_write): Likewise. (Target_powerpc::Relocate::relocate): Likewise.
-
Alan Modra authored
GOT relocations can refer directly to a function in a fixed position executable, unlike ADDR64 which needs a global entry stub, or branch relocs, which need PLT stubs. * powerpc.cc (is_got_reloc): New function. (Target_powerpc::Relocate::relocate): Use it here, exclude GOT relocs when looking for stubs.
-
H.J. Lu authored
GCC 11 supports -march=x86-64-v[234] to enable x86 micro-architecture ISA levels: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=97250 Update GNU_PROPERTY_X86_ISA_1_XXX macros: https://gitlab.com/x86-psABIs/x86-64-ABI/-/merge_requests/13 in x86 ELF binaries to indicate that micro-architecture ISA levels required to execute the binary: #define GNU_PROPERTY_X86_ISA_1_NEEDED (GNU_PROPERTY_X86_UINT32_OR_LO + 2) #define GNU_PROPERTY_X86_ISA_1_USED (GNU_PROPERTY_X86_UINT32_OR_AND_LO + 2) #define GNU_PROPERTY_X86_ISA_1_V2 (1U << 0) #define GNU_PROPERTY_X86_ISA_1_V3 (1U << 1) #define GNU_PROPERTY_X86_ISA_1_V4 (1U << 2) The previous GNU_PROPERTY_X86_ISA_1_XXX macros are deprecated and renamed to GNU_PROPERTY_X86_COMPAT_2_ISA_1_XXX. In addition to EM_X86_64, GNU_PROPERTY_X86_ISA_1_V[234] marker can be used by ld.so to detect the x86-64-v4 shared library placed in an x86-64-v2 directory by mistake on an x86-64-v2 machine to avoid crashes on x86-64-v4 instructions. Add -z x86-64-v[234] linker command line option to mark x86-64-v[234] ISA level as needed. Also add #define GNU_PROPERTY_X86_FEATURE_2_MASK (1U << 11) for mask registers. bfd/ PR gas/26703 * elf-linker-x86.h (elf_linker_x86_params): Add isa_level. * elfxx-x86.c (_bfd_x86_elf_merge_gnu_properties): Merge GNU_PROPERTY_X86_ISA_1_V[234]. (_bfd_x86_elf_link_setup_gnu_properties): Generate GNU_PROPERTY_X86_ISA_1_V[234] for -z x86-64-v[234]. binutils/ PR gas/26703 * readelf.c (decode_x86_compat_2_isa): New function. (decode_x86_isa): Updated for new X86_ISA_1_XXX bits. (decode_x86_feature_1): Handle GNU_PROPERTY_X86_FEATURE_2_MASK. (print_gnu_property_note): Handle X86_COMPAT_2_ISA_1_USED, and X86_COMPAT_2_ISA_1_NEEDED. * testsuite/binutils-all/i386/pr21231b.s: Updated to the current GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_ISA_1_NEEDED values. * testsuite/binutils-all/x86-64/pr21231b.s: Likewise. * testsuite/binutils-all/x86-64/pr23494a.s: Likewise. * testsuite/binutils-all/x86-64/pr23494b.s: Likewise. * testsuite/binutils-all/x86-64/pr23494c.s: Likewise. * testsuite/binutils-all/i386/empty.d: Updated. * testsuite/binutils-all/i386/ibt.d: Likewise. * testsuite/binutils-all/i386/pr21231a.d: Likewise. * testsuite/binutils-all/i386/pr21231b.d: Likewise. * testsuite/binutils-all/i386/shstk.d: Likewise. * testsuite/binutils-all/x86-64/empty-x32.d: Likewise. * testsuite/binutils-all/x86-64/empty.d: Likewise. * testsuite/binutils-all/x86-64/ibt-x32.d: Likewise. * testsuite/binutils-all/x86-64/ibt.d: Likewise. * testsuite/binutils-all/x86-64/pr21231a.d: Likewise. * testsuite/binutils-all/x86-64/pr21231b.d: Likewise. * testsuite/binutils-all/x86-64/pr23494a-x32.d: Likewise. * testsuite/binutils-all/x86-64/pr23494a.d: Likewise. * testsuite/binutils-all/x86-64/pr23494c-x32.d: Likewise. * testsuite/binutils-all/x86-64/pr23494c.d: Likewise. * testsuite/binutils-all/x86-64/pr23494d-x32.d: Likewise. * testsuite/binutils-all/x86-64/pr23494d.d: Likewise. * testsuite/binutils-all/x86-64/pr23494e-x32.d: Likewise. * testsuite/binutils-all/x86-64/pr23494e.d: Likewise. * testsuite/binutils-all/x86-64/shstk-x32.d: Likewise. * testsuite/binutils-all/x86-64/shstk.d: Likewise. gas/ PR gas/26703 * config/tc-i386.c (xstate): Add xstate_mask. (md_assemble): Check i.types[j], instead of i.tm.operand_types[j], for xstate. Set xstate_mask, instead of xstate_zmm, for RegMask. (output_insn): Update for GNU_PROPERTY_X86_ISA_1_V[234]. Update xstate for mask register and VSIB. * testsuite/gas/i386/i386.exp: Run more GNU_PROPERTY tests. * testsuite/gas/i386/property-1.s: Updated to the current GNU_PROPERTY_X86_ISA_1_USED value. * testsuite/gas/i386/property-2.s: Only keep cmove. * testsuite/gas/i386/property-3.s: Changed to addsubpd. * testsuite/gas/i386/property-1.d: Updated. * testsuite/gas/i386/property-2.d: Likewise. * testsuite/gas/i386/property-3.d: Likewise. * testsuite/gas/i386/property-4.d: Likewise. * testsuite/gas/i386/property-5.d: Likewise. * testsuite/gas/i386/property-6.d: Likewise. * testsuite/gas/i386/x86-64-property-1.d: Likewise. * testsuite/gas/i386/x86-64-property-2.d: Likewise. * testsuite/gas/i386/x86-64-property-3.d: Likewise. * testsuite/gas/i386/x86-64-property-4.d: Likewise. * testsuite/gas/i386/x86-64-property-5.d: Likewise. * testsuite/gas/i386/x86-64-property-6.d: Likewise. * testsuite/gas/i386/x86-64-property-7.d: Likewise. * testsuite/gas/i386/x86-64-property-8.d: Likewise. * testsuite/gas/i386/x86-64-property-9.d: Likewise. * testsuite/gas/i386/property-11.d: New file. * testsuite/gas/i386/property-11.s: Likewise. * testsuite/gas/i386/property-12.d: Likewise. * testsuite/gas/i386/property-12.s: Likewise. * testsuite/gas/i386/property-13.d: Likewise. * testsuite/gas/i386/property-13.s: Likewise. * testsuite/gas/i386/x86-64-property-11.d: Likewise. * testsuite/gas/i386/x86-64-property-12.d: Likewise. * testsuite/gas/i386/x86-64-property-13.d: Likewise. * testsuite/gas/i386/x86-64-property-14.d: Likewise. * testsuite/gas/i386/x86-64-property-14.s: Likewise. include/ PR gas/26703 * elf/common.h (GNU_PROPERTY_X86_ISA_1_USED): Renamed to ... (GNU_PROPERTY_X86_COMPAT_2_ISA_1_USED): This. (GNU_PROPERTY_X86_ISA_1_NEEDED): Renamed to ... (GNU_PROPERTY_X86_COMPAT_2_ISA_1_NEEDED): This. (GNU_PROPERTY_X86_ISA_1_XXX): Renamed to ... (GNU_PROPERTY_X86_COMPAT_2_ISA_1_XXX): This. (GNU_PROPERTY_X86_ISA_1_NEEDED): New. (GNU_PROPERTY_X86_ISA_1_USED): Likewise. (GNU_PROPERTY_X86_ISA_1_V2): Likewise. (GNU_PROPERTY_X86_ISA_1_V3): Likewise. (GNU_PROPERTY_X86_ISA_1_V4): Likewise. (GNU_PROPERTY_X86_FEATURE_2_MASK): Likewise. ld/ PR gas/26703 * NEWS: Mention -z x86-64-v[234]. * ld.texi: Document -z x86-64-v[234]. * emulparams/elf32_x86_64.sh: Use x86-64-level.sh. * emulparams/elf_i386.sh: Likewise. * emulparams/elf_x86_64.sh: Likewise. * emulparams/x86-64-level.sh: New file. * testsuite/ld-elf/x86-feature-1a.rd: Update. * testsuite/ld-elf/x86-feature-1b.rd: Likewise. * testsuite/ld-elf/x86-feature-1c.rd: Likewise. * testsuite/ld-elf/x86-feature-1d.rd: Likewise. * testsuite/ld-elf/x86-feature-1e.rd: Likewise. * testsuite/ld-i386/pr23372c.d: Likewise. * testsuite/ld-i386/pr23486c.d: Likewise. * testsuite/ld-i386/pr23486d.d: Likewise. * testsuite/ld-i386/pr24322a.d: Likewise. * testsuite/ld-i386/pr24322b.d: Likewise. * testsuite/ld-i386/property-1a.r: Likewise. * testsuite/ld-i386/property-2a.r: Likewise. * testsuite/ld-i386/property-3.r: Likewise. * testsuite/ld-i386/property-3a.r: Likewise. * testsuite/ld-i386/property-4.r: Likewise. * testsuite/ld-i386/property-4a.r: Likewise. * testsuite/ld-i386/property-5.r: Likewise. * testsuite/ld-i386/property-5a.r: Likewise. * testsuite/ld-i386/property-7a.r: Likewise. * testsuite/ld-i386/property-x86-3.d: Likewise. * testsuite/ld-i386/property-x86-4a.d: Likewise. * testsuite/ld-i386/property-x86-5.d: Likewise. * testsuite/ld-i386/property-x86-cet1.d: Likewise. * testsuite/ld-i386/property-x86-cet2a.d: Likewise. * testsuite/ld-i386/property-x86-cet5a.d: Likewise. * testsuite/ld-i386/property-x86-cet5b.d: Likewise. * testsuite/ld-i386/property-x86-ibt1a.d: Likewise. * testsuite/ld-i386/property-x86-ibt1b.d: Likewise. * testsuite/ld-i386/property-x86-ibt2.d: Likewise. * testsuite/ld-i386/property-x86-ibt3a.d: Likewise. * testsuite/ld-i386/property-x86-ibt3b.d: Likewise. * testsuite/ld-i386/property-x86-ibt4.d: Likewise. * testsuite/ld-i386/property-x86-ibt5.d: Likewise. * testsuite/ld-i386/property-x86-shstk1a.d: Likewise. * testsuite/ld-i386/property-x86-shstk1b.d: Likewise. * testsuite/ld-i386/property-x86-shstk2.d: Likewise. * testsuite/ld-i386/property-x86-shstk3a.d: Likewise. * testsuite/ld-i386/property-x86-shstk3b.d: Likewise. * testsuite/ld-i386/property-x86-shstk4.d: Likewise. * testsuite/ld-i386/property-x86-shstk5.d: Likewise. * testsuite/ld-x86-64/pr23372c-x32.d: Likewise. * testsuite/ld-x86-64/pr23372c.d: Likewise. * testsuite/ld-x86-64/pr23486c.d: Likewise. * testsuite/ld-x86-64/pr23486d-x32.d: Likewise. * testsuite/ld-x86-64/pr23486d.d: Likewise. * testsuite/ld-x86-64/pr24322a-x32.d: Likewise. * testsuite/ld-x86-64/pr24322a.d: Likewise. * testsuite/ld-x86-64/pr24322b-x32.d: Likewise. * testsuite/ld-x86-64/pr24322b.d: Likewise. * testsuite/ld-x86-64/pr24458a-x32.d: Likewise. * testsuite/ld-x86-64/pr24458a.d: Likewise. * testsuite/ld-x86-64/pr24458b-x32.d: Likewise. * testsuite/ld-x86-64/pr24458b.d: Likewise. * testsuite/ld-x86-64/pr24458c-x32.d: Likewise. * testsuite/ld-x86-64/pr24458c.d: Likewise. * testsuite/ld-x86-64/property-1a.r: Likewise. * testsuite/ld-x86-64/property-2a.r: Likewise. * testsuite/ld-x86-64/property-3.r: Likewise. * testsuite/ld-x86-64/property-3a.r: Likewise. * testsuite/ld-x86-64/property-4.r: Likewise. * testsuite/ld-x86-64/property-4a.r: Likewise. * testsuite/ld-x86-64/property-5.r: Likewise. * testsuite/ld-x86-64/property-5a.r: Likewise. * testsuite/ld-x86-64/property-7a.r: Likewise. * testsuite/ld-x86-64/property-x86-3-x32.d: Likewise. * testsuite/ld-x86-64/property-x86-3.d: Likewise. * testsuite/ld-x86-64/property-x86-4a-x32.d: Likewise. * testsuite/ld-x86-64/property-x86-4a.d: Likewise. * testsuite/ld-x86-64/property-x86-5-x32.d: Likewise. * testsuite/ld-x86-64/property-x86-5.d: Likewise. * testsuite/ld-x86-64/property-x86-cet1-x32.d: Likewise. * testsuite/ld-x86-64/property-x86-cet1.d: Likewise. * testsuite/ld-x86-64/property-x86-cet2a-x32.d: Likewise. * testsuite/ld-x86-64/property-x86-cet2a.d: Likewise. * testsuite/ld-x86-64/property-x86-cet5a-x32.d: Likewise. * testsuite/ld-x86-64/property-x86-cet5a.d: Likewise. * testsuite/ld-x86-64/property-x86-cet5b-x32.d: Likewise. * testsuite/ld-x86-64/property-x86-cet5b.d: Likewise. * testsuite/ld-x86-64/property-x86-ibt1a-x32.d: Likewise. * testsuite/ld-x86-64/property-x86-ibt1a.d: Likewise. * testsuite/ld-x86-64/property-x86-ibt1b-x32.d: Likewise. * testsuite/ld-x86-64/property-x86-ibt1b.d: Likewise. * testsuite/ld-x86-64/property-x86-ibt2-x32.d: Likewise. * testsuite/ld-x86-64/property-x86-ibt2.d: Likewise. * testsuite/ld-x86-64/property-x86-ibt3a-x32.d: Likewise. * testsuite/ld-x86-64/property-x86-ibt3a.d: Likewise. * testsuite/ld-x86-64/property-x86-ibt3b-x32.d: Likewise. * testsuite/ld-x86-64/property-x86-ibt3b.d: Likewise. * testsuite/ld-x86-64/property-x86-ibt4-x32.d: Likewise. * testsuite/ld-x86-64/property-x86-ibt4.d: Likewise. * testsuite/ld-x86-64/property-x86-ibt5-x32.d: Likewise. * testsuite/ld-x86-64/property-x86-ibt5.d: Likewise. * testsuite/ld-x86-64/property-x86-shstk1a-x32.d: Likewise. * testsuite/ld-x86-64/property-x86-shstk1a.d: Likewise. * testsuite/ld-x86-64/property-x86-shstk1b-x32.d: Likewise. * testsuite/ld-x86-64/property-x86-shstk1b.d: Likewise. * testsuite/ld-x86-64/property-x86-shstk2-x32.d: Likewise. * testsuite/ld-x86-64/property-x86-shstk2.d: Likewise. * testsuite/ld-x86-64/property-x86-shstk3a-x32.d: Likewise. * testsuite/ld-x86-64/property-x86-shstk3a.d: Likewise. * testsuite/ld-x86-64/property-x86-shstk3b-x32.d: Likewise. * testsuite/ld-x86-64/property-x86-shstk3b.d: Likewise. * testsuite/ld-x86-64/property-x86-shstk4-x32.d: Likewise. * testsuite/ld-x86-64/property-x86-shstk4.d: Likewise. * testsuite/ld-x86-64/property-x86-shstk5-x32.d: Likewise. * testsuite/ld-x86-64/property-x86-shstk5.d: Likewise. * testsuite/ld-i386/i386.exp: Run property-x86-6, property-x86-isa1, property-x86-isa2 and property-x86-isa3. * testsuite/ld-i386/property-x86-1.S: Updated to the current GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_ISA_1_NEEDED values. * testsuite/ld-i386/property-x86-2.S: Likewise. * testsuite/ld-i386/property-x86-3.s: Likewise. * testsuite/ld-x86-64/pr23372d.s: Likewise. * testsuite/ld-x86-64/pr23372e.s: Likewise. * testsuite/ld-x86-64/pr23372f.s: Likewise. * testsuite/ld-x86-64/pr23486c.s: Likewise. * testsuite/ld-x86-64/pr23486d.s: Likewise. * testsuite/ld-x86-64/property-x86-1.S: Likewise. * testsuite/ld-x86-64/property-x86-2.S: Likewise. * testsuite/ld-x86-64/property-x86-3.s: Likewise. * testsuite/ld-x86-64/property-x86-5a.s: Likewise. * testsuite/ld-x86-64/property-x86-5b.s: Likewise. * testsuite/ld-i386/property-x86-6.d: New file. * testsuite/ld-i386/property-x86-isa1.d: Likewise. * testsuite/ld-i386/property-x86-isa2.d: Likewise. * testsuite/ld-i386/property-x86-isa3.d: Likewise. * testsuite/ld-x86-64/property-x86-6-x32.d: Likewise. * testsuite/ld-x86-64/property-x86-6.d: Likewise. * testsuite/ld-x86-64/property-x86-6.s: Likewise. * testsuite/ld-x86-64/property-x86-isa1-x32.d: Likewise. * testsuite/ld-x86-64/property-x86-isa1.d: Likewise. * testsuite/ld-x86-64/property-x86-isa1.s: Likewise. * testsuite/ld-x86-64/property-x86-isa2-x32.d: Likewise. * testsuite/ld-x86-64/property-x86-isa2.d: Likewise. * testsuite/ld-x86-64/property-x86-isa3-x32.d: Likewise. * testsuite/ld-x86-64/property-x86-isa3.d: Likewise. * testsuite/ld-x86-64/simple.s: Likewise. * ld/testsuite/ld-x86-64/x86-64.exp: Run property-x86-6, property-x86-6-x32, property-x86-isa1, property-x86-isa1-x32, property-x86-isa2, property-x86-isa2-x32, property-x86-isa3-x32 and property-x86-isa3.
-
Hannes Domani authored
When printing void results without any format letter, they are output as expected: (gdb) p $abcd $1 = void (gdb) p (void)10 $2 = void But if any format letter (besides s) is used, it always outputs zero: (gdb) p/x $abcd $3 = 0x0 (gdb) p/x (void)10 $4 = 0x0 So this adds void results to the types handled like unformatted prints. gdb/ChangeLog: 2020-10-09 Hannes Domani <ssbssa@yahoo.de> PR exp/26714 * printcmd.c (print_formatted): Handle void results as unformatted prints. gdb/testsuite/ChangeLog: 2020-10-09 Hannes Domani <ssbssa@yahoo.de> PR exp/26714 * gdb.base/printcmds.exp: Add tests for void results.
-
Andrew Burgess authored
After commit: commit 51a948fd Date: Mon Jul 20 14:18:04 2020 +0100 gdb: Have allocate_target_description return a unique_ptr There were a few places where we could (should?) have delayed releasing the target_desc_up until a little later. This commit catches these cases. In the case of ARC, the target_desc_up is now exposed right out to gdbserver, which means making a small change there too. There should be no user visible changes after this commit. gdb/ChangeLog: * arch/aarch32.c (aarch32_create_target_description): Release the target_desc_up as late as possible. * arch/aarch64.c (aarch64_create_target_description): Likewise. * arch/amd64.c (amd64_create_target_description): Likewise. * arch/arc.c (arc_create_target_description): Return a target_desc_up, don't release it. * arch/arc.h (arc_create_target_description): Update declaration. (arc_lookup_target_description): Move target_desc_up into the cache, and return a borrowed pointer. * arch/arm.c (arm_create_target_description): Release the target_desc_up as late as possible. * arch/i386.c (i386_create_target_description): Likewise. * arch/riscv.h (riscv_create_target_description): Update declaration to match definition. * arch/tic6x.c (tic6x_create_target_description): Release the target_desc_up as late as possible. gdbserver/ChangeLog: * linux-arc-low.cc (arc_linux_read_description): Release the unique_ptr returned from arc_create_target_description.
-
Andrew Burgess authored
An issue was reported here related to building GDB on MinGW: https://sourceware.org/pipermail/gdb/2020-September/048927.html It was suggested here: https://sourceware.org/pipermail/gdb/2020-September/048931.html that the solution might be to make use of $(LIB_GETRANDOM), a variable defined in the gnulib makefile, when linking GDB. In fact I think the issue is bigger than just LIB_GETRANDOM. When using the script binutils-gdb/gnulib/update-gnulib.sh to reimport gnulib there is a lot of output from gnulib's gnulib-tool. Part of that output is this: You may need to use the following makefile variables when linking. Use them in <program>_LDADD when linking a program, or in <library>_a_LDFLAGS or <library>_la_LDFLAGS when linking a library. $(FREXPL_LIBM) $(FREXP_LIBM) $(INET_NTOP_LIB) $(LIBTHREAD) $(LIB_GETLOGIN) $(LIB_GETRANDOM) $(LIB_HARD_LOCALE) $(LIB_MBRTOWC) $(LIB_SETLOCALE_NULL) $(LTLIBINTL) when linking with libtool, $(LIBINTL) otherwise What I think this is telling us is that we should be including the value of all these variables on the link line for gdb and gdbserver. The problem though is that these variables are define in gnulib's makefile, but are not (necessarily) defined in GDB's makefile. One solution would be to recreate the checks that gnulib performs in order to recreate these variables in both gdb's and gdbserver's makefile. Though this shouldn't be too hard, most (if not all) of these checks are in the form macros defined in m4 files in the gnulib tree, so we could just reference these as needed. However, in this commit I propose a different solution. Currently, in the top level makefile, we give gdb and gdbserver a dependency on gnulib. Once gnulib has finished building gdb and gdbserver can start, these projects then have a hard coded (relative) path to the compiled gnulib library in their makefiles. In this commit I extend the gnulib configure script to install a new makefile fragment in the gnulib build directory. This new file will have the usual variable substitutions applied to it, and so can include the complete list (see above) of all the extra libraries that are needed when linking against gnulib. In fact the new makefile fragment defines three variables, these are: LIBGNU: The path to the archive containing gnulib. Can be used as a dependency as when this file changes gdb/gdbserver should be relinked. LIBGNU_EXTRA_LIBS: A list of linker -l.... flags that should be included in the link line of gdb/gdbserver. These are libraries that $(LIBGNU) depends on. This list is taken from the output of gnulib-tool, which is run by our gnulib/update-gnulib.sh script. INCGNU: A list of -I.... include paths that should be passed to the compiler, these are where the gnulib headers can be found. Now both gdb and gdbserver can include the makefile fragment and make use of these variables. The makefile fragment relies on the variable GNULIB_BUILDDIR being defined. This is checked for in the fragment, and was already defined in the makefiles of gdb and gdbserver. gdb/ChangeLog: * Makefile.in: Include Makefile.gnulib.inc. Don't define LIBGNU or INCGNU. Make use of LIBGNU_EXTRA_LIBS when linking. gdbserver/ChangeLog: * Makefile.in: Include Makefile.gnulib.inc. Don't define LIBGNU or INCGNU. Make use of LIBGNU_EXTRA_LIBS when linking. gnulib/ChangeLog: * Makefile.gnulib.inc.in: New file. * Makefile.in: Regenerate. * configure: Regenerate. * configure.ac: Install the new file.
-
Jan Vrany authored
gdb/ChangeLog * source.c (directory_command): Notify observers that "directories" parameter has changed. gdb/testsuite/ChangeLog * gdb.mi/mi-cmd-param-changed.exp: Check that notification is is emmited for both 'set directories' and 'directory' commands.
-
Tom Tromey authored
I noticed a couple of spots where the "disassemble" could style its output, but currently does not. This patch adds styling to the function name at the start of the disassembly, and any addresses printed there. gdb/ChangeLog 2020-10-08 Tom Tromey <tom@tromey.com> * cli/cli-cmds.c (print_disassembly): Style function name and addresses. Add _() wrappers. gdb/testsuite/ChangeLog 2020-10-08 Tom Tromey <tom@tromey.com> * gdb.base/style.exp: Check that "main"'s name is styled.
-
GDB Administrator authored
-
- Oct 08, 2020
-
-
H.J. Lu authored
Update testsuite/split_i386.sh, testsuite/split_x32.sh and testsuite/split_x86_64.sh for commit f9ff65d4 Author: Alan Modra <amodra@gmail.com> Date: Thu Oct 8 10:27:43 2020 +1030 [GOLD] Increase --split-stack-adjust-size * testsuite/split_i386.sh: Updated for --split-stack-adjust-size default change. * testsuite/split_x32.sh: Likewise. * testsuite/split_x86_64.sh: Likewise.
-
Shahab Vahedi authored
gdb/ChangeLog: * NEWS: Mention ARC support in GDBserver.
-
Andrew Burgess authored
Update allocate_target_description to return a target_desc_up, a specialisation of unique_ptr. This commit does not attempt to make use of the unique_ptr in the best possible way, in almost all cases we immediately release the pointer from within the unique_ptr and then continue as before. There are a few places where it was easy to handle the unique_ptr, and in these cases I've done that. Everything under gdb/features/* is auto-regenerated. There should be no user visible changes after this commit. gdb/ChangeLog: * arch/aarch32.c (aarch32_create_target_description): Release unique_ptr returned from allocate_target_description. * arch/aarch64.c (aarch64_create_target_description): Likewise. * arch/amd64.c (amd64_create_target_description): Likewise. * arch/arc.c (arc_create_target_description): Likewise. * arch/arm.c (arm_create_target_description): Likewise. * arch/i386.c (i386_create_target_description): Likewise. * arch/riscv.c (riscv_create_target_description): Update return type. Handle allocate_target_description returning a unique_ptr. (riscv_lookup_target_description): Update to handle unique_ptr. * arch/tic6x.c (tic6x_create_target_description): Release unique_ptr returned from allocate_target_description. * features/microblaze-with-stack-protect.c: Regenerate. * features/microblaze.c: Regenerate. * features/mips-dsp-linux.c: Regenerate. * features/mips-linux.c: Regenerate. * features/mips64-dsp-linux.c: Regenerate. * features/mips64-linux.c: Regenerate. * features/nds32.c: Regenerate. * features/nios2.c: Regenerate. * features/or1k.c: Regenerate. * features/rs6000/powerpc-32.c: Regenerate. * features/rs6000/powerpc-32l.c: Regenerate. * features/rs6000/powerpc-403.c: Regenerate. * features/rs6000/powerpc-403gc.c: Regenerate. * features/rs6000/powerpc-405.c: Regenerate. * features/rs6000/powerpc-505.c: Regenerate. * features/rs6000/powerpc-601.c: Regenerate. * features/rs6000/powerpc-602.c: Regenerate. * features/rs6000/powerpc-603.c: Regenerate. * features/rs6000/powerpc-604.c: Regenerate. * features/rs6000/powerpc-64.c: Regenerate. * features/rs6000/powerpc-64l.c: Regenerate. * features/rs6000/powerpc-7400.c: Regenerate. * features/rs6000/powerpc-750.c: Regenerate. * features/rs6000/powerpc-860.c: Regenerate. * features/rs6000/powerpc-altivec32.c: Regenerate. * features/rs6000/powerpc-altivec32l.c: Regenerate. * features/rs6000/powerpc-altivec64.c: Regenerate. * features/rs6000/powerpc-altivec64l.c: Regenerate. * features/rs6000/powerpc-e500.c: Regenerate. * features/rs6000/powerpc-e500l.c: Regenerate. * features/rs6000/powerpc-isa205-32l.c: Regenerate. * features/rs6000/powerpc-isa205-64l.c: Regenerate. * features/rs6000/powerpc-isa205-altivec32l.c: Regenerate. * features/rs6000/powerpc-isa205-altivec64l.c: Regenerate. * features/rs6000/powerpc-isa205-ppr-dscr-vsx32l.c: Regenerate. * features/rs6000/powerpc-isa205-ppr-dscr-vsx64l.c: Regenerate. * features/rs6000/powerpc-isa205-vsx32l.c: Regenerate. * features/rs6000/powerpc-isa205-vsx64l.c: Regenerate. * features/rs6000/powerpc-isa207-htm-vsx32l.c: Regenerate. * features/rs6000/powerpc-isa207-htm-vsx64l.c: Regenerate. * features/rs6000/powerpc-isa207-vsx32l.c: Regenerate. * features/rs6000/powerpc-isa207-vsx64l.c: Regenerate. * features/rs6000/powerpc-vsx32.c: Regenerate. * features/rs6000/powerpc-vsx32l.c: Regenerate. * features/rs6000/powerpc-vsx64.c: Regenerate. * features/rs6000/powerpc-vsx64l.c: Regenerate. * features/rs6000/rs6000.c: Regenerate. * features/rx.c: Regenerate. * features/s390-gs-linux64.c: Regenerate. * features/s390-linux32.c: Regenerate. * features/s390-linux32v1.c: Regenerate. * features/s390-linux32v2.c: Regenerate. * features/s390-linux64.c: Regenerate. * features/s390-linux64v1.c: Regenerate. * features/s390-linux64v2.c: Regenerate. * features/s390-te-linux64.c: Regenerate. * features/s390-tevx-linux64.c: Regenerate. * features/s390-vx-linux64.c: Regenerate. * features/s390x-gs-linux64.c: Regenerate. * features/s390x-linux64.c: Regenerate. * features/s390x-linux64v1.c: Regenerate. * features/s390x-linux64v2.c: Regenerate. * features/s390x-te-linux64.c: Regenerate. * features/s390x-tevx-linux64.c: Regenerate. * features/s390x-vx-linux64.c: Regenerate. * mips-tdep.c (_initialize_mips_tdep): Release unique_ptr returned from allocate_target_description. * target-descriptions.c (allocate_target_description): Update return type. (print_c_tdesc::visit_pre): Release unique_ptr returned from allocate_target_description. gdbserver/ChangeLog: * linux-low.cc (linux_process_target::handle_extended_wait): Release the unique_ptr returned from allocate_target_description. * linux-riscv-low.cc (riscv_target::low_arch_setup): Likewise. * linux-x86-low.cc (tdesc_amd64_linux_no_xml): Change type. (tdesc_i386_linux_no_xml): Change type. (x86_linux_read_description): Borrow pointer from unique_ptr object. (x86_target::get_ipa_tdesc_idx): Likewise. (initialize_low_arch): Likewise. * tdesc.cc (allocate_target_description): Update return type. gdbsupport/ChangeLog: * tdesc.h (allocate_target_description): Update return type.
-
Alan Modra authored
For functions with small (< 256 bytes) stack frames, the current x86 do_calls_non_split ignores --split-stack-adjust-size and, in combination with __morestack_non_split, supplies a non-split-stack function with at least 0x100000 (1M) available stack. On powerpc64, a default of 0x4000 is not large enough to reliably work with the golang testsuite. This increase the default size to the defacto x86 value. * options.h (split_stack_adjust_size): Default to 0x100000.
-